Exercise 1: [A12] By calculating the parameters m_1, n_1 and m_2, n_2 , show that the vectors

$$\vec{a} = \begin{pmatrix} 1\\7\\-9 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$

satisfy the equations $\vec{b} = m_1 \vec{a} + n_1 \vec{c}$ and $\vec{c} = m_2 \vec{a} + n_2 \vec{b}$.

Exercise 2: [A13] Given are $\vec{a} = 3\vec{e}_x + 2\vec{e}_y - 5\vec{e}_z$ and $\vec{b} = 2\vec{e}_x - 4\vec{e}_y + \vec{e}_z$. Calculate $2\vec{a} + 4\vec{b}$ and $3\vec{a} - 2\vec{b}$.

Exercise 3: [A16] a) Which combinations out of the following vectors are collinear?

$$\vec{a} = \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} -2\\ 4\\ 7 \end{pmatrix} \quad \vec{c} = \begin{pmatrix} 2\\ -4\\ 6 \end{pmatrix} \quad \vec{d} = \begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix}$$

b) Which combinations out of the following vectors are coplanar?

$$\vec{a} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} 3\\-1\\2 \end{pmatrix} \quad \vec{c} = \begin{pmatrix} 15\\2\\-1 \end{pmatrix} \quad \vec{d} = \begin{pmatrix} -9\\-4\\5 \end{pmatrix}$$

Exercise 4: [A17]

- a) Determine values for x and z, so that $\vec{a} = \begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} x \\ 4 \\ z \end{pmatrix}$ are collinear.
- b) Determine values of y such that the vectors $\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 1 \\ y \\ -9 \end{pmatrix}$ are coplanar.

Exercise 5: [A18] Show that force $\vec{F} = \begin{pmatrix} -12 \text{ N} \\ 1 \text{ N} \\ 10 \text{ N} \end{pmatrix}$ can be decomposed in the direction of $\vec{a} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$. The vectors \vec{F}_a and \vec{F}_b are the partial forces in direction of \vec{a} and \vec{b} respectively. Calculate them.

Exercise 6: [A19] Given are
$$\vec{a} = \begin{pmatrix} 1 \\ 8 \\ -4 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 4 \\ 7 \\ 4 \end{pmatrix}$.

- a) Determine the length of the given vectors.
- b) Determine the unit vectors.
- c) What is the angle between the vectors?

Exercise 7: [A20] a) Show that
$$\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix}$ are perpendicular.
b) For which y are $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 6 \\ y \\ 1 \end{pmatrix}$ perpendicular?
Exercise 8: [A21] Given are $\vec{a} = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}$

- a) Calculate the angle between \vec{a} and \vec{b} .
- b) Calculate $\vec{a} \cdot \vec{e}_x$ and $\vec{b} \cdot \vec{e}_y$.
- c) What is the angle between \vec{a} and the *x*-axis as well as the angle between \vec{b} and the *y*-axis?

Exercise 9: [A22] For which y, z is the vector $\vec{c} = \begin{pmatrix} 3 \\ y \\ z \end{pmatrix}$ perpendicular to both vectors $\vec{a} = \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$?

Exercise 10: [A23b] Vector \vec{b}_a is called projection vector of \vec{b} in the direction of \vec{a} . Determine the projection vectors \vec{b}_a and \vec{a}_b for $\vec{a} = \begin{pmatrix} 10\\5\\10 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 1\\8\\4 \end{pmatrix}$.

Exercise 11: [A24] Given the vectors $\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 7 \\ 4 \\ -2 \end{pmatrix}$. Determine a vector that is perpendicular to both \vec{a} and \vec{b} . How many such vectors do exist?

Exercise 12: [A26] For
$$\vec{a} = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 5 \\ 2 \\ -3 \end{pmatrix}$ calculate $(4\vec{a} + 3\vec{b}) \times (2\vec{a} - 4\vec{b})$ by

- a) calculating the terms in brackets and multiply.
- b) applying distributive law.

Exercise 13: [A32] If the box product $\vec{c} \cdot (\vec{a} \times \vec{b}) = \vec{0}$, then $\vec{a}, \vec{b}, \vec{c}$ are coplanar. Examine whether the given vectors are coplanar. If possible find λ, μ such that $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ is satisfied.

a)
$$\vec{a} = \begin{pmatrix} -2\\7\\1 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} 4\\-2\\1 \end{pmatrix}$
b) $\vec{a} = \begin{pmatrix} 2\\3\\4 \end{pmatrix}$ $\vec{b} = \begin{pmatrix} 1\\3\\-1 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} 2\\-2\\1 \end{pmatrix}$

Exercise 14: [A36]

- a) Determine a parametric equation of the straight line through $P_1(2, -4, 3)$ and $P_2(1, -12, -3)$.
- b) Examine, which of the points $P_3(4, 12, 15)$ and $P_4(-1, 3, 0)$ belong to the straight line.

Exercise 15: [A37] Given are the straight lines

$$g_{1}: \vec{r_{1}} = \begin{pmatrix} 3\\2\\-2 \end{pmatrix} + t_{1} \begin{pmatrix} -2\\1\\3 \end{pmatrix} \qquad g_{2}: \vec{r_{2}} = \begin{pmatrix} -1\\2\\-1 \end{pmatrix} + t_{2} \begin{pmatrix} 2\\0\\-4 \end{pmatrix} \\ g_{3}: \vec{r_{3}} = \begin{pmatrix} 0\\2\\-3 \end{pmatrix} + t_{3} \begin{pmatrix} 0\\0\\2 \end{pmatrix} \qquad g_{4}: \vec{r_{4}} = \begin{pmatrix} 4\\5\\0 \end{pmatrix} + t_{4} \begin{pmatrix} 2\\-1\\-3 \end{pmatrix}$$

Which are parallel, which coincide?

Exercise 16: [A40] Given are the four points $P_1(2, -1, -2), P_2(8, 3, -4), P_3(1, -7, 3)$ and $P_4(-4, 3, -7)$.

- a) Show that the four points lie in the same plane.
- b) Determine the intersection point of the straight lines P_1P_2 and P_3P_4 as well as the (acute) angle between the straight lines.

Exercise 17: [A41] Given is the straight line $\vec{r} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$.

- a) Give reasons why the straight line lies in the x-y-plane.
- b) Transform the parametric equation of the straight line into the form $y = m \cdot x + n$.

Exercise 18: [A45] Examine whether the straight lines $\vec{r_1} = \begin{pmatrix} -7 \\ -1 \\ 4 \end{pmatrix} + \lambda_1 \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ and

 $\vec{r}_2 = \begin{pmatrix} -2 \\ -3 \\ 14 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1 \\ -2 \\ 4 \end{pmatrix}$ lie in the same plane. Determine a parametric equation of the plane if possible.

Exercise 19: [A47] The straight lines $g_1: \vec{r_1} = \begin{pmatrix} 2\\4\\6 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\5\\2 \end{pmatrix}$ and

 $g_2: \vec{r_2} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2\\10\\4 \end{pmatrix}$ are parallel. Determine a parametric equation of the plane that is spanned by the straight lines g_1 and g_2 .

Exercise 20: [A48] Determine the intersection point of the plane P and the straight line L.

$$P: \vec{r} = \begin{pmatrix} 2\\ -3\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 4\\ 1\\ 2 \end{pmatrix} + \mu \begin{pmatrix} -2\\ 1\\ 0 \end{pmatrix} \qquad L: P_1(-10, -10, 6); P_2(-3, 4, -15)$$

Exercise 21: [A58] Given the points $P_1(7,5,8)$, $P_2(11,20,10)$ and $P_3(1,-16,6)$. Determine an equation of the plane through P_1 , P_2 and P_3

- a) in parametric form.
- b) in normal form.
- c) in Hesse normal form.

Exercise 22: [A60] Given the three planes

$$P_1: \vec{r} = \begin{pmatrix} 2\\3\\-5 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \mu \begin{pmatrix} 3\\-1\\4 \end{pmatrix}$$
$$P_2: -9 \cdot x + y + 7 \cdot z = 12$$
$$P_3: \begin{pmatrix} 18\\-2\\-14 \end{pmatrix} \vec{r} - 100 = 0$$

What is the position of these planes relative to each other?

Exercise 23: [A61] Given the plane $12 \cdot x - 4 \cdot y + 3 \cdot z = 26$.

- a) Calculate its distance from the origin.
- b) What is the distance of the point $P_1(36, -13, 19)$ and the plane?

Exercise 24: [A62] Given the point $P_1(3, 4, 4)$. Determine an equation of the plane, which contains the point P_1 and is perpendicular to the y-axis.

Exercise 25: [A63] Given the plane P: 6x - 2y - 3z = 14. Determine an equation of the plane, which is parallel to P and has a distance d = 4 from P.

Exercise 26: [A64] Determine the vertexes and the length of the heights of the triangle given by the three straight lines $l_1: \vec{r} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $l_2: -2 \cdot x + y = 3$ and $l_3: \begin{pmatrix} 3 \\ 2 \end{pmatrix} \vec{r} = 22$.